Final Exam - Review - Problems

Peyam Ryan Tabrizian

Wednesday, December 7th, 2011

1 Diagonalization

Problem 1

Find a diagonal matrix D and an invertible matrix P such that $A=P D P^{-1}$, where:

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

2 Orthogonality

Problem 2

Apply the Gram-Schmidt process to find an orthonormal basis for $W=$ $\operatorname{Span}\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \mathbf{u}_{\mathbf{3}}\right\}$, where:

$$
\mathbf{u}_{\mathbf{1}}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right], \mathbf{u}_{\mathbf{2}}=\left[\begin{array}{c}
1 \\
1 \\
1 \\
-1
\end{array}\right], \mathbf{u}_{\mathbf{3}}=\left[\begin{array}{c}
1 \\
0 \\
2 \\
-1
\end{array}\right]
$$

Problem 3

Find the orthogonal projection of $f(x)=\cos (x)$ on W, where:

$$
W=\operatorname{Span}\{\sin (x), \sin (2 x), \cos (2 x)\}
$$

with respect to the following inner product:

$$
f \cdot g=\int_{-\pi}^{\pi} f(x) g(x) d x
$$

3 Symmetric matrices

Problem 4

Find an orthogonal matrix P and a diagonal matrix D such that $A=P D P^{T}$, where:

$$
A=\left[\begin{array}{cc}
1 & -3 \\
-3 & 9
\end{array}\right]
$$

Problem 5

Write the quadratic form $x_{1}^{2}-6 x_{1} x_{2}+9 x_{2}^{2}$ without cross-product terms.

4 Vector Spaces

Problem 6

Let $\mathcal{B}=\left\{e^{x}, e^{x} \cos (x), e^{x} \sin (x)\right\}$, and let $V=\operatorname{Span}(\mathcal{B})$.
Define $T: V \longrightarrow V$ by:

$$
T(y)=y^{\prime}+2 y
$$

Find the matrix of T relative to \mathcal{B}

Problem 7

Let V be the vector space of 2×2 symmetric matrices. Find a basis for V and the dimension of V.

Problem 8

For the following matrix A, find $\operatorname{Rank}(A)$ and a basis for $\operatorname{Row}(A), \operatorname{Col}(A), \operatorname{Nul}(A)$:

$$
A=\left[\begin{array}{cccc}
1 & -4 & 9 & -7 \\
-1 & 2 & -4 & 1 \\
5 & -6 & 10 & 7
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & -1 & 5 \\
0 & -2 & 5 & -6 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

5 True/False Extravaganza!

Problem 9

(a) If $\operatorname{Nul}(A)=\{0\}$, then $\operatorname{Rank}(A)$ is the number of columns of A.
(b) If A is a 6×8 matrix, then the smallest possible dimension of $\operatorname{Nul}(A)$ is 6.
(c) If $\operatorname{dim}(V)=3$ and $T: V \rightarrow V$ is one-to-one, then it is also onto.
(d) If Q is an $n \times n$ orthogonal matrix, then $\operatorname{det}(Q)= \pm 1$.
(e) If A is symmetric, then eigenvectors corresponding to different eigenvalues are orthogonal.
(f) If W is a subspace of V and $y \in V$, then there is a unique vector \widetilde{w} in W such that $\|y-\widetilde{w}\| \leq\|y-w\|$ for all $w \in W$
(g) If A diagonalizable, then so is A^{2}
(h) If the characteristic polynomial of A is $(\lambda-1)^{3}$, then A has 3 linearly independent eigenvectors.
(i) If A is an orthogonal $n \times n$ matrix, then $\operatorname{Row}(A)=\operatorname{Col}(A)$
(j) Linear algebra is so much more awesome than differential equations! :)

